Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation
نویسندگان
چکیده
منابع مشابه
The Combined Reproducing Kernel Method and Taylor Series for Handling Fractional Differential Equations
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by u...
متن کاملError estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.
متن کاملerror estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
in this paper at first , we discuss about nonlinear pseudoparabolic equations with nonlocalboundary conditions and their results.at second we use an effective error estimation for this method altough has not yet beendiscussed. the aim of this paper is to fill this gap.
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ain Shams Engineering Journal
سال: 2018
ISSN: 2090-4479
DOI: 10.1016/j.asej.2017.04.006